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The spin-orbit splittings of the valence and conduction bands of the group-1V semiconductors
Si, Ge, and a-Sn, the III-V compounds AlSb, GaP, GaAs, GaSb, InP, InAs, and InSb, and the
II-VI compounds ZnS, ZnSe, ZnTe, and CdTe have been obtained at the I', X, and L symmetry

points in the Brillouin zone.
plane wave (ROPW) model.

The calculations were made using a relativistic orthogonalized
The energies presented are differences in eigenvalues of the Dirac

Hamiltonian where the exchange correlation potential operator was approximated by the cube
root of the electron density with coefficients suggested by Slater and by Kohn, Sham, and Gas-

par (KSG).

The calculated values are compared with values obtained from experiments and

from previous ke D calculations. The validity of the two-thirds rule for the ratio of the L-
point to I'-point valence-band spin-orbit splitting is examined. The effects of hydrostatic pres-
sure on the spin-orbit splittings are also presented.

I. INTRODUCTION

The purpose of this paper is to present calculat-
ed crystalline spin-orbit splittings obtained from
solutions of the Dirac equation. The Dirac equation
is solved using a relativistic orthogonalized-plane-
wave (ROPW) formalism with a crystalline potential
which is a superposition of isolated-atom poten-
tials."? This study includes the effect of using a
crystalline self-consistent potential and the effect
of different exchange approximations upon the cal-
culated splittings. The spin-orbit splittings for a
wide variety of semiconductors (Si, Ge, «-Sn, AlSb,
GaP, GaAs, GaSb, InP, InAs, InSb, ZnS, ZnSe,
ZnTe, and CdTe) are given in order to check (or
establish) trends as well as to give their individual
values. Also, the hydrostatic pressure effect upon
the spin-orbit splittings is calculated and compared
with experiment.

Observations of spin-orbit splittings throughout
the Brillouin zone have been made using optical
reflectivity, ® electroreflectance, * and absorption®
spectra. These measurements determine the value
of the splittings to within a few hundreds of an eV.
In fact the very small increases in the spin-orbit
splitting due to hydrostatic pressure have been
measured. ®

On the theoretical side, the spin-orbit splittings

have been calculated using the OPW formalism and
first-order perturbation theory by Liu’ for Si and
Ge. Herman etal.® obtained the valence-band I'-
point splitting by scaling atomic spin-orbit splittings
for these compourds. Cardona and co-workers
(Ref. 4) have used the k - _f) perturbation-theory
method in which some band information including
one or several spin-orbit splittings must be used

as input to allow determination of the adjustable
parameters. Once these parameters are deter-
mined, the band structure throughout the zone can
be extrapolated. This works quite well in some
cases, but fails at times as will be pointed out later.

The method used in this paper is a “black box”
computer program into which the lattice constant
and atomic numbers are fed, and out of which comes
an unadjusted relativistic band structure. This
approach has been utilized by Herman and co-
workers!'#? using a relativistic OPW formalism
with an isolated-atom crystalline potential and by
Eckelt, !° and Madelung and Treusch!! who use the
Korringa -Kohn-Rostoker (KKR) formalism with a
muffin-tin potential derived from a superposition
of isolated-atom crystalline potentials.

In Sec. II A, the relativistic OPW formalism is
briefly presented. Special attention is given to the
insensitivity of the isolated-atom potential model to
the shape of the extended tail of the core charge
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density. Section II B introduces the characteristic
nonrelativistic and relativistic band structures for
these materials. The rationale of the two-thirds
rule for the ratio of the top-valence-band spin-
orbit splitting at the L point to that at the I' point
is also reviewed. The insensitivity of the calcu-
lated spin-orbit splittings upon OPW convergenoe,
the exchange -correlation potential coefficient, and
upon self -consistent charge rearrangement are
discussed in Sec. IIC. The spin-orbit splittings
are presented and discussed in Sec. IIT A. The

two-thirds rule is compared with calculational results.

General trends from compound to compound are
pointed out. In Sec. III B, isolated-atom spin-orbit
splittings are given for the atoms making up the
various crystals. Their relative contribution to
the crystalline splittings is shown. Section IIIC
presents the dependence of the calculated spin-
orbit splittings upon hydrostatic pressure. The
calculated results roughly confirm experimental
findings. The most important points of the paper
are then summarized in Sec. IV.

II. COMPUTATIONAL MODEL
A. Theory

The work in our laboratory on nonrelativistic
self-consistent orthogonalized-plane -wave (SCOPW)
band calculations has led to results which permit
realistic comparisons with available experimental
data for the band structure and related properties
for a wide range of compounds.!?!® It is possible
to calculate the effects of pressure on band struc-
ture, deformation energies, spin-orbit splittings,
effective masses, valence and conduction band
densities of states, the imaginary part of the di-
electric constant (€,), and x-ray form factors with
no adjustments to fit experiment.

In spite of some measure of success in this labo-
ratory and by other investigators, much remains
to be learned. Perhaps the most controversial and
active area concerns the approximations used to
handle exchange and correlation in crystals, 15:17=2
Another area which has received much less attention
is that of relativistic effects. One can certainly
use first-order perturbation theory in nonrelativis -
tic band calculations to take account of relativistic
and spin-orbit effects. On the other hand, Herman
and his co-workers have taken a more fundamental
approach by developing band calculations in a fully
relativistic formalism.!'? It is our contention that
this approach must be pursued further before a
final decision is made on the exchange-correlation
problem. For the heavier compounds, a serious
question can be raised about making refinements
to nonrelativistic calculations. In short, exchange
studies should be done with relativistic calculations.
For the heavy II-VI, III-V, and group-IV compounds
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and atoms, relativistic corrections are at least as
large as the differences introduced by varying the
coefficient in a p’? exchange approximation. Our
goal is to reformulate the SCOPW technique using
relativistic electronic wave functions which are
solutions of the Dirac equation.

We have some reservations about the overlapping-
isolated-atom-potential model with regard to the
energy eigenvalues. However, the spin-orbit split-
tings, which compare well with experiment, are
relatively insensitive to the exchange parameter
used [Slater or Kohn-Sham-Gaspar (KSG)] and to
the convergence with respecttothe number of OPW’s
used.

In addition to the fact that an exchange approxi-
mation must be made in order to carry out calcula-
tions and that care must be exercised to insure
convergence, there are two problems peculiar to
the non-self -consistent model. The first is that
the model neglects the valence charge density re-
arrangement that takes place when isolated atoms
are brought together to form a crystal. No correc-
tion is made for this error in the isolated-atom
model. The second problem arises in the treatment
of the crystal potential. The potential is formed
from a superposition of isolated-atom potentials.
However, the core states at a given lattice site are
perturbed by the overlap of the valence atomic wave
functions centered at different lattice sites. A
correction is made in terms of a “core shift” by
adding up all the isolated-atom total potentials at
a site due to the neighboring sites.? Therefore,
the potential of an isolated atom is modified by the
addition of a constant potential. The core wave
functions are unchanged and all the core energy
levels at a given lattice site are shifted downward
by a common amount.

It is at first rather disturbing to observe that
after the first few shells of neighbors, the main
contribution to the core shift comes from the tail of
the p'? exchange potential. Thus, one can obtain
considerable variation in the core shifts depending
on how far out one carries the sum over the un-
realistic exchange tail. This would seem to indicate
that the calculated eigenvalues are very sensitive
to a rather unphysical part of the model. Fortu-
nately, this problem is not serious because the
exchange tail also contributes to the valence electron
potential energy at large ». The potential energy
for K=0 is an additive term in all valence electron
eigenvalues. # The exchange tail shifts all core and
valence eigenvalues by the same amount and does
not affect relative energy differences. This fact
removes the dependence of the model on the long-
range-exchange tail provided that the V(K =0) inte-
gral is carried out just as far as the core shift
sum.

All of these problems raise some doubts about
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the energy eigenvalues generated by the isolated-
atom model and self-consistency is a must if no
adjustments are to be made. However, we find
that the spin-orbit splittings obtained with this
model are insensitive to all of the drawbacks of the
model. This is true because the spin-orbit inter-
action is a phenomenon which takes place in the
core. In this region, the persistent exchange tail,
the valence charge-density rearrangement, and
plane wave convergence are not important param-
eters. The spin-orbit splitting is also relatively
insensitive to the coefficient of the p'/® exchange
term because the exchange potential is small in the
core compared to the Coulomb potential. The core
levels themselves are certainly sensitive to this
coefficient, but the smaller spin-orbit splittings
are less so in absolute value.

The Dirac Hamiltonian for an electron in a central
field V(r) is

H=—(2/q)ia- V+(2/¢g?)B+1,V(r) ,

where g is the fine-structure constant and @, 8, and
I, are the operators

~ (0 d). _120>. _(120>
”‘"(& o)’ B‘(o 1,00 17\o 1,

The three 2X 2 Pauli matrices are represented by
o and I, is the 2X 2 unit matrix. In order to find
the eigenvalues of this Hamiltonian by the method
of orthogonalized plane waves, it is assumed that
the eigenfunctions are Slater determinants of one-
electron wave functions, as in the nonrelativistic
problem. The states are four component functions
in which the equations satisfied by the large and
small components of the radial wave functions are
found by the variational principle. The complete
one -electron functions are taken to be a finite linear
combination of plane waves which are orthogonalized
to the core states.

Following the development of Herman, Kortum,
Ortenburger, and Van Dyke, one can obtain the
eigenvalues of the Dirac Hamiltonian. The over-
lapping atomic potential and core eigenvalues are
calculated with programs adapted from those of
Liberman, Waber, and Cromer.?® We are indebted
to Dr. Liberman for supplying us with his programs.

The order of the matrices that must be solved to
find the energy eigenvalues is greatly reduced by
using symmetrized orthogonalized plane waves.
This is an important factor in the relativistic for-
malism because the inclusion of spin doubles the
matrix size. The linearly independent members
of the stars including spin at the I', X, and L points
in the reduced zone are determined and then the
projection-operator method is used to determine
linear combinations of the plane waves which are
the symmetrized OPW’s. We have presented a

summary of the symmetrization techniques in Ref. 26.
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B. Relativistic Band Structure

All of the compounds considered in this paper
have the zinc-blende tetrahedral crystal symmetry.
The diamond crystal structure (for Si, Ge, and «-
Sn) is a special case of zinc-blende symmetry in
which anion and cation are identical. Zinc-blende
notation will be used throughout this paper. The
zinc-blende Brillouin zone is illustrated in Fig. 1.
Figures 2(a) and 2(b) give the schematic nonrel-
ativistic and relativistic band structures for this
group of compounds at I'y X, and L. The top non-
relativistic valence band has p -like symmetry at
I'. At X and L, the p-like band is split by the
crystal field into an x, y, and z band. The bottom
conduction band at I (T';) is s like. The next
higher conduction band is p like and again shows
crystal field splitting at X and L. The doubly and
triply degenerate nonrelativistic bands are then
spin-orbit split as shown in Fig. 2.

The two-thirds rule, first derived by Roth and
Lax, ¥ states that the spin-orbit splitting of the
top valence band at L (the Lj,) is two-thirds of the
spin-orbit splitting of the top valence band at I’
(the I'y5,). The derivation of this relation is in-
dicated in Fig. 3. The top valence band at I' in
the nonrelativistic limit consists of the triply
degenerate x, y, z basis functions. Adding spin
basis functions « and R and diagonalizing the
operator H,, (Hy, = AL - §) yields the j=4$ and 3
basis functions which are split in energy by 3A.
The situation is different at L where the nonrel-
ativistic crystal field splits off the z basis function
(Ly,) from the doubly degenerate x, y basis func-
tions (L,,). Adding « and B spin functions to the
x, v functions and diagonalizing H,, then produces
a spin-orbit splitting A of the L,;,. Deviations from
the two-thirds rule are then to be expected because
of the much weaker spin-orbit coupling between
the L,, states and the L,, state. One would expect

FIG. 1. The zinc-blende Brillouin zone with high-

symmetry points labeled.
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the bottom L, (L,,) to push up the L, (L,,) state,
decreasing the L point splitting, and thus decreas-
ing the ratio below two-thirds.
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FIG. 2. (a) Schematic
nonrelativistic and rela-
tivistic band structure
along I'-X for zinc-blende
symmetry. Spin-orbit
splitting notation follows
that of Cardona et al.
(Ref. 4). (b) Schematic
nonrelativistic and rela-
tivistic band structure
along I'-L for zinc-blende
symmetry. Spin-orbit
splitting notation follows
that of Cardona et al.
(Ref. 4).

The situation is quite different for the top valence
band at X. Group theory demands that there be no
spin-orbit splitting of the top X;, for group-1v
The X, spin-orbit splitting thus re-
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flects the dissimilarity of anion and cation.
C. Approximations

It is important to consider the dependence of the
calculated spin-orbit splittings upon the convergence
of the OPW series, and upon the exchange-cor-
relation effective potential. We are also able to
evaluate the dependence on the isolated-atom vs
the self-consistent potential.

229 plane waves at the I" point and an equivalent
number at X and L were used in the OPW wave-
function expansion for all the compounds. All of
the band energy differences for compounds pre-
sented in this paper are converged to within 0.2 eV,
while the spin-orbit splittings are converged to
within 0.02 eV. Table I illustrates the convergence
of the InAs eigenvalues and spin-orbit splittings.
This convergence behavior is typical for all these
compounds, indicating that a sufficient number of
plane waves was used in the wave-function expan-
sion.

The uncertainty in the spin-orbit splittings due to

TABLE I. Convergence of OPW energy levels at the T’
point for InAs. All entries are in eV.

No. of
plane waves 113 137 181 229

Tee —-26.42 —26.42 —26.42  —26.42
Tse -30.27 -30.32 -—-30.34 -30.35
T -30.73 —30.78 —30.81 —-30.81
Tsc -35.29 —35.29 -35.29 -35.30
Ty —-35.52 -—=35.61 —-35.70 —35.72
T —-35.88 —=35.97 —36.07 -36.10
Ty —47.,15 =47.15 —47.15 —47.15
Tgp-Try 0.35 0.36 0.37 0.38
Tye~Te 0.46 0.46 0.47 0.47

approximations to the effective exchange-correlation
operator must also be considered. The best-known
approximations are Slater’s, where the eigenvalues
match excitation energies quite closely, and Kohn-
Sham -Gaspar’s, where the charge density closely
matches the Hartree-Fock charge density. To
illustrate the dependence of the spin-orbit splittings
upon the exchange -correlation approximation, cal-
culations are presented throughout the paper for
both approximations. The dependence of the spin-
orbit splittings upon the exchange-correlation ap-
proximation ranges from 0.01 to a maximum of
0.06 eV for the compounds investigated.

The use of an isolated-atom potential rather than
a self-consistent crystal potential is a more serious
matter. The eigenvalue differences change up to
an eV between the two models. However, the
spin-orbit splittings, which depend primarily upon
the potential in the inner core region, are much
less sensitive to details of the crystalline potential.
Table II illustrates this lack of sensitivity by com-
paring ZnSe spin-orbit splittings derived from the
isolated-atom model with those derived from a fully
self-consistent model. Details of the self-consistent
model and detailed ZnSe self-consistent results will

TABLE II. Relativistic OPW (ROPW) and self-consis-
tent relativistic OPW (SCROPW) spin-orbit splittings for

ZnSe. All entries are in eV.
ROPW SCROPW

Ay 0.449 0.464
Ay 0.145 0.167
A, 0.199 0.198
ALg) 0.266 0.258
A(L) 0.063 0.082
A(Lge)/ B, 0.59 0.56
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TABLE III.

1301

Calculated and experimental values of the spin-orbit splittings in crystals of Si, Ge, and a-Sn. The label

S refers to ROPW calculations using Slater’s exchange approximation and KSG refers to Kohn-Sham-Gaspar exchange.

All entries are in eV,

ROPW - -
S KSG Expt? OPWP oPWe orPwd k°p° kep?
4
Si 0.05 0.05 0.04! 0.046 0.042
Ge 0.30 0.30 0.29¢ 0.28 0.29
a-Sn 0.67 0.66 0.65 0.64
A5
Si 0.03 0.04 0.035 0.051 0.06
Ge 0.24 0.22 0.21 0.36 0.36
a-Sn 0.54 0.49 0.48 0.48 1.06 0.97
ALge)
Si 0.03 0.03 0.03 0.02
Ge 0.19 0.19 0.20 0.18 0.16
a-Sn 0.44 0.43 0.48 0.41 0.43
A(L3)
Si 0.00 0.02 0.02
Ge 0.11 0.10 0.10
a-Sn 0.27 0.22 0.318 0.28
A(Lg' )/Ao
Si 0.60 0.60 0.65
Ge 0.63 0.63 0.64
a-Sn 0.66 0.65 0.64
2Experimental numbers given for A(Lj.) and A(L;) are 9See Ref. 7.
actually A; and A{. °See Ref. 28.
bSee Ref. 9. fSee Ref. 4.
°See Ref. 2. &See Ref. 9.

be published in a separate paper. As can be seen
from the table, self-consistent charge rearrange-
ment changes the spin-orbit splittings by about

0.02 eV or less. This conclusion is substantiated
by unpublished self-consistent results for Ge, GaAs,
and CdTe.

We thus conclude that the spin-orbit splittings
presented in this paper have a maximum uncertainty
of + 10%, due to calculational approximations which
involve truncating the plane-wave series, approxi-
mating the correct many-body exchange-correlation
effective potential, and neglecting self-consistent
charge rearrangement.

III. RESULTS AND DISCUSSION

A. Spin-Orbit Splittings

The calculated values of the spin-orbit splittings
are given in Tables II-V. The notation is the same
as that of Cardona, Shaklee, and Pollack.* Experi-
mental estimates are included in the table for A,
A(Lg), and 4, as well as A, values. It is generally
agreed that A, is the splitting of the top valence
band along the A line near the L symmetry point.
For comparison, other calculational results are
included for A5, A(Ljs'), A(L;), and 4, where
available.

A large enough number of samples of the tetra-
hedrally bonded semiconductors have been cal-
culated to establish trends which differ somewhat
from those obtained by the empirical approach of
Ref. 4. This is mainly in the calculated relativistic
OPW A value compared to the k- ﬁ value. Also
the interesting ratio of the A(Lj3’) / 4, of these
compounds is contained in the tables and discussed.
To be noted also in the following is the rather good
agreement between the relativistic OPW calculated
values of A; and the experimental measurements.
4y is generally the best known experimental value.

1. Group-IV Elements

The agreement between the ROPW calculations
and the measured spin-orbit splittings shown in
Table III is quite good aspointed out above. It ap-
pears to matter very little which exchange approxi-
mation (Slater or Kohn-Sham-Gasper) is used except
in the case of the a-Sn value. For the latter, the
Slater exchange value is 0. 27 eV as compared to
the 0. 22-eV value obtained with the use of the Kohn-
Sham-Gasper approximation. The experimental
value® is 0.31 eV which does favor the Slater
results. Also in «-Sn, the A(Lj’) value is ~ 0.05
eV less than the A; experimental value. A ROPW
calculation was made at the midpoint of the A line
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TABLE IV. Calculated and experimental values of the
spin-orbit splittings in III-V zinc-blende crystals. The
label S refers to ROPW calculations using Slater’s ex-

change approximations and KSG refers to Kohn-Sham-Gas-

par exchange. All entries are in eV.

ROPW .
S KSG Expt®® OPW® k*p® kepd

A

AlSb 0.67 0.64  0.75

GaP  0.09 0.09 0.10

GaAs 0.35 0.34 0.34 0.32

GaSb 0.68 0.66  0.80 0.64

mP 0.12 0.13  0.11

InAs  0.38 0.37  0.43

mSb  0.77 0.75  0.82 0.72
Ay

AlSb  0.11 0.09 0.10 0.24

GaP 0.18 0.17 0.18  0.17 0.22

GaAs 0.20 0.19 0.26 0.29

GaSb 0.29 0.26 0.26  0.31 0.39

ImP  0.45 0.43 0.74 0.82

InAs  0.47 0.44 0.67 0.74

InSb  0.47 0.43 0.43  0.78 0.94
ALg)

AlSb  0.38 0.36  0.40 0.34

GaP 0.06 0.06 0.10 0.09 0.072

GaAs 0.21 0.21  0.23 0.20 0.18 0.22

GaSb 0.41 0.39  0.46 0.37  0.39

mP 0.09 0.11 0.15 0.14 0.11

InAs  0.25 0.26  0.28 0.28

InSb  0.49 0.47  0.50 0.44  0.50 0.40
A(L3)

AlSb  0.07 0.05 0.09

GaP  0.06 0.05 0.08

GaAs 0.10 0.08 0.08  0.11

GaSb 0.16 0.14 0.13  0.16

ImP  0.20 0.17 0.24

InAs  0.22 0.19 0.25

InSb  0.24 0.20 0.20  0.33
4y

AlSb  0.31 0.29 0.28

GaP —0.02 —0.02 0.01

GaAs 0.10 0.09 0.08  0.07

GaSb 0.26 0.24 0.37  0.29

InP —-0.07 —0.08 0.21

InAs  0.05 0.02 0.03

InSb  0.21 0.18 0.16  0.09
A(Lje)/ 8

AlSb  0.57 0.56

GaP  0.67 0.67

GaAs 0.60 0.62 0.63

GaSb 0.60 0.59 0.58

ImP  0.75 0.85

InAs  0.66 0.70

InSb  0.63 0.63 0.61

2Experimental numbers given for A(Lgy) and A(Lj) are
actually A; and Af.

®See Ref. 4.

°See Ref. 2.

dSee Ref. 28.

to see if the spin-orbit value was appreciably dif-
ferent from that at the L point. A value of 0.45 eV
was obtained using Slater’s exchange approximation
which is not large enough to conclude that the split-
ting is greater along A than at the L point.

The ROPW value of A5 is always significantly less
than the K - p calculation of Ref. 4. The cause of
this discrepancy is perhaps that in the K- 5 cal-
culation, only the bonding and antibonding s and p
states were considered to contribute. The value

TABLE V. Calculated and experimental values of the
spin-orbit splittings in II-VI zinc-blende crystals. The
label S refers to ROPW calculations using Slater’s
exchange approximation and KSG refers to Kohn-Sham-
Gaspar exchange. All entries are in eV.

ROPW
S KSG Expt* OPW? KKR® KKRY k-pe
Ay
ZnS 0.10 0.11 0.07f 0.08 0.0
ZnSe 0.45 0.44 0.45f 0.42 0.42
ZnTe 0.95 0.92 0.93" 0.88 0.93 0.93
cdTe 0.95 0.93 0.81%Rh 0,86 0.90 0.90
0.92}
Ay
ZnS 0.15 0.14 0.14 0.14
ZnSe 0.15 0.14 0.14 0.20
ZnTe 0.15 0.14 0.12
CdTe 0.36 0.33 0.33  0.35 0.63
AlLge)
ZnS 0.04 0.05 0.05
ZnSe 0.27 0.26 0.25° 0.27 0.26
ZnTe 0.56 0.54 0.57" 0.50 0.54
CcdTe 0.59 0.57 0.57® 0.51 0.54 0.92
A(Lg)
ZnS  0.04 0.03 0.05
ZnSe 0.06 0.06 0.05
ZnTe 0.09 0.09 0.07 0.04
CdTe 0.18 0.15 0.16" 0.15 0.14
Ay
ZnS  0.03 0.02 0.03
ZnSe 0.20 0.17 0.22
ZnTe 0.43 0.39 0.37 0.44
CdTe 0.40 0.35 0.35" 0.32 0.38
ALge) /By
ZnS  0.40 0.45 0.63
ZnSe 0.60 0.59 0.64
ZnTe 0.58 0.58 0.57 0.58
CdTe 0.62 0.61 0.59 0.60

2Experimental numbers given for A(Lj: ) and A(L;) are
actually Ay and Af.

bSee Ref. 2.

°See Ref. 10.

dSee Ref. 11.

°See Ref. 28.

fSee Ref. 29.

&See Ref. 30.

bSee Ref. 31.

iSee Ref. 4.



4 CALCULATED SPIN-ORBIT SPLITTINGS...

of 4,5 is then determined by requiring tllat X4
remain degenerate. In Ref. 9, the k- p A5 value
matches that of ROPW. This was achieved by
adding another parameter in the calculation.

The two-thirds rule for the ratio A(Ly’) /A, holds
approximately for the group-IV elements. However,
there appear to be two trends in the data. First,
the value of the ratio becomes larger for heavier
elements (see Table III). Second, in all three
cases the ratio is slightly less than the two-thirds
value.

2. OI-V Compounds

The 4, data for these compounds demonstrate
that the spin-orbit splitting of the valence band at
the I' point is strongly influenced by the anion (e.g.,
see GaP-InP or AlSb-InSb in Table IV). The in-
fluence of the cation on A ; is to make the value
somewhat larger for heavier cations. For example,
the Slater exchange result for AlSb is 0.67 eV,
while it is 0.68 eV for GaSb and 0.77 eV for InSb.
The valence -band spin-orbit splitting at the L point
[a(L4)] is also dominated by the anion. As at the
T’ point, the splitting is somewhat larger for heavier
cations. This influence of the cation causes the
A(L4) /A, ratio to deviate from the value of Z.

The conduction-band spin-orbit splittings
[A(L,) and Ay;] are dominated by the cation. The
effect of the anion is to increase the splitting for
the heavier ions. This effect is more pronounced
in the Ga compounds than in the In compounds be-
cause the In compounds have larger conduction
band splittings due to the In itself.

The values of the valence-band splittings at the
X point A, are listed as negative for the phospho-
rous compounds. The X;, and X;, energy levels
do indeed cross over which suggests that the cation
contribution to the splitting is opposite in sign to
that of the anion. The fact that the other compounds
in the Ga and In sequence give a positive value for
4, indicates that the major contribution to the va-
lence-band splitting is due to the anion as mentioned
for the T" and L points.

3. II-VI Compounds

As before, the ROPW calculated A, values of the
II-VI compounds given in Table V agree quite well
with experiment. The splitting is strongly influenced
by the anion as in the case of the III-V compounds.
Also, the 4,5 splitting is determined primarily by
the cation. Similar to the III-V compounds, the
cation has more of an influence on A(L ) than on
Ay. This causes the A(Lg)/A, ratio to deviate from
£. The value of this ratio for ZnS seems to be
anomalous. One would expect the ratio to be larger
than ZnSe by comparison with III-V compounds,
where compounds with a lighter anion give a larger
A(Lg)/Ag within a cation series. It should also be
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pointed out that the splittings for ZnS are quite
small and the anomaly may result from calculational
uncertainties in the results. The A, value for

ZnS is positive compared to the negative value found
for GaP and InP. However, it is small. The 4,
values show the same general behavior as found for
the III-V compounds.

B. Atomic Spin-Orbit Splittings

The relativistic atomic programs of Liberman
et al.,® which are used to calculate the starting
atomic potential and the core eigenvalues, give the
spin-orbit splittings of the atomic levels. The split-
tings of the p and d states of the isolated atoms which
form the compounds discussed in this paper are
given in Table VI. Slater’s exchange approximation
was used to calculate the numbers given in this
table; however, Kohn-Sham-Gaspar’s results are
very similar. The OPW formalism requires a
choice of which atomic states are to be taken as
core states and which are valence states. The
tightly bound core states are the isolated-atom
states which are assumed to be unchanged in the
crystalline environment. The loosely bound va-
lence wave functions are considerably altered by
the crystalline environment and are expanded in
the OPW series. The horizontal lines in Table
VI show the division of the atomic states between
OPW core states and valence states.

The outer-core d-state splittings are especially
interesting as reflectivity and absorption peaks are
observed which involve these states. However in
the crystalline environment, crystal field splitting
is as important as spin-orbit splitting for the highest
d states. As indicated, the crystal field splitting
is ignored in the OPW model for core states so that
one cannot infer much about crystalline results from
atomic spin-orbit splittings for these states. The
top-valence-band p states also experience combined
crystal field and spin-orbit splittings in the crystal,
and thus deviate considerably from the isolated atom
values. On the other hand, the top-valence-band
I';s5, state is not crystal field split. One expects
the crystalline spin-orbit splittings A, to be closely
related to the spin-orbit splittings of the corre-
sponding isolated atom anion states. (It is well
established that the I'y;, wave function is localized
primarily around the anion sites.) One must also
consider the crystalline enhancement of the spin-
orbit valence-band splittings over the atomic values
which results from a contraction of the valence
state wave function about the core region when it
is packed into a crystal.” The fact that our cal-
culational results for A, agree so well with the outer
p-state splitting of the corresponding atomic anion
must be considered as fortuitous. The numbers in
parentheses in Table VI are deduced from experi-
mental optical spectra.* These splittings were ob-
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Slater’s exchange approximation was used in all cases. All entries are in eV. Numbers

in parenthesis give atomic spin-orbit splitting deduced from optical spectra (Ref. 32).

Calculated spin-orbit splittings of atomic levels.

TABLE VI.

Te

Sn

Ga Ge As Se cd

Zn

Si

Al

Atom

Level

1s

2s

214.5 234.5 256.0 278.9

0.70 0.99 1.35 24.6 28.5 32.8 37.6 42.9 195.8

0.48

2p
3s

3.2 3.8 4.5 5.3 6.1 35.4 39.2 43.3 47.7 52.5

0
0.071)

0.07

0.028)

0.014)

3p
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10.69

10.05

0.46 0.64 0.80 0.97 6.98 8.1 9.1

0.40

3d
4s

~
(=1
i

9.0

6.2 7.9

0.33 0.45 6.1
(0.31)

0.18)

0.10)

4p

[
<+
-t

0.95 1.14 1.35

0.70

4d
5s

0.95
0.60)

0.75

(0.42)

(0.27)

5p

tained by use of the spin-orbit matrix elements
given in Condon and Shortley.?® In first-order per-
turbation theory for group-IV and -VI atoms, the
atomic spin-orbit splitting is three times the split-
ting between the J =0 and J =1 levels, and is also
1.5 times the splitting between the J =1 and J =2
levels. An average of these two determinations is
presented in the tables. Below germanium in the
Periodic Table, these determinations agree within
25%, but the deviations get progressively worse,
until for Te, the two numbers to be averaged are
0.02 and 0. 88. As can be seen, crystalline en-
hancement does occur but is not reflected in our
atomic calculations.

It is also interesting to examine the relative con-
tribution of the various core spin-orbit splittings to
the valence and conduction spin-orbit splittings, even
though this represents a considerable simplifica-
tion to the actual state of affairs. The valence
OPW wave function can be written in the form

Id)) = l‘bPW> - IC) )

consisting of plane-wave terms and orthogonality
terms involving the core wave functions. The
spin-orbit expectation values then consist of four
terms:

(W|H|) = Bpy |H| Bow) ~ (Ppw|H|c)
—(c|H| @py) +(c|H|0).

Liu® was first to observe that the predominant con-
tribution to spin-orbit splitting comes from the last
core-core expectation values. If one considers the
relative contributions of the core spin-orbit split-
tings obtained merely by combining orthogonality
coefficients with the core splittings, it is observed
that for small &, the outer core p state contributes
the most to the crystalline spin-orbit splitting,

but deeper core p states become more significant
for larger k.

C. Effects of Pressure on Spin-Orbit Splittings

Over the past few years, there have been theo-
retical® and experimental® attempts to specify the
behavior of the spin-orbit splitting when the crystal

TABLE VII. Effect of hydrostatic pressure (1% decrease
in lattice constant) on Ay and Ags for Ge, GaAs, and ZnSe.
Slater’s exchange approximation was used in all cases.
Energies are in eV.

) Ay
under % change under % change
% pressure in A, 4y;  pressure in A
Ge 0.2976  0.2982 +0.2% 0.2364  0.2370 +0.25%
GaAs 0.3508  0.3515 +0.2% 0.2002  0.2010 +0.4%
ZnSe 0.4493 0.4538 +1.0% 0.1454 0.1472 +1.2%
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FIG. 4. Fractional change of OPW orthogonalization
coefficient (see Sec. IIA) of the top core p state of GaAs
at the T point as a function of k2. A value k?=12.3 corre-

sponds to the use of 229 plane waves in the OPW expansion.

is subjected to hydrostatic pressure. Brust and
Liu** used the OPW formalism to estimate the
volume dependence of the valence-band spin-orbit
splitting and obtained

884,/ Bgo® — 4(ba/a),

where a is the lattice constant. This result can be
anticipated if one considers the volume dependence
due to renormalization of the wave function to de-
pend on 1/4® and the renormalization of the higher
electron momentum to depend on 1/a (3p electron
state). Experimentally it has been found that in-
stead of a factor of 4, a value closer to 1x1 is
more correct. Clearly, the spin-orbit splitting
does not scale in a simple way with volume as de-
rived by Brust and Liu.

In order to examine this problem, ROPW calcu-
lations were carried out with a 1% change in lat-
tice constant for ZnSe, GaAs, and Ge. The results
are presented in Table VII. In all cases the change

CALCULATED SPIN-ORBIT SPLITTINGS, ..

1305

in spin-orbit splitting Ao was = 1%. These results
also support those of Cerdeira et al.® who used the
KKR method to calculate the change in spin-orbit
splitting.

It is apparent that the volume dependence of the
valence-band spin-orbit splitting is not as simple
as outlined by Brust and Liu. This is borne out
experimentally and in more recent calculations in-
cluding those presented here. One reason that
8A,,/ A4, cannot scale in a simple way is demon-
strated in Fig. 4. The 3p orthogonalization coef-
ficients in the OPW treatment are k& dependent and,
in fact, change sign for larger k. The converged
OPW calculations will give a different 3p contri-
bution to A4, than the one OPW treatment of Brust
and Liu. Also, Melz and Ortenburger®® have pointed
out that larger deviations from the 1/4® volume de-
pendence of the spin-orbit matrix element due to
wave function renormalization are possible if the
renormalization is assumed to occur outside rigid
ion cores.

IV. SUMMARY

It has been demonstrated that the ROPW model
is capable of yielding very good results for the
spin-orbit splitting of crystals with the diamond
or zinc-blende structure. The splittings are quite
insensitive to self-consistent charge rearrangement,
plane-wave convergence, and the coefficient in
a p!/% exchange-correlation approximation. The
two-thirds rule has been examined. It holds rea-
sonably well and the deviations are explainable on
the basis of spin-orbit coupling at the L point. Our
results for the effect of hydrostatic pressure on
spin-orbit splitting support the experimental re-
sults. The change is much smaller than predicted
by earlier treatments.
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It is shown that one can explain the temperature dependence of the phonon conductivity of Ge
in the entire range from 2 to 1000 °K if the three-phonon relaxation rate is given by
Tapn | < g(w)T™De-®/oT  Three-phonon scattering processes are classified, after Guthrie, into
two groups: class I, which involves the annihilation of carrier phonons by combination, and

class II, which involves splitting of carrier phonons.

At all temperatures, the values of m(T)

for both classes of processes lie either definitely below or close to the upper limit of »(7) as

obtained by Guthrie.

I. INTRODUCTION

Recently Guthrie! has given an expression for
the three-phonon relaxation rate in the form

T < &) F(T) , (1)

where f(T)=T™ and m =m(T). Further, g(w)=w
for transverse phonons, and g(w)=w? for longitu-
dinal phonons. The value of m is found to be the
same for both normal and umklapp processes.
However, Klemens®™* has given an expression for
umklapp processes:

Tsm-l xg(w)T"e-@/aT . (2)

At low temperatures he has taken m = 4 for trans-
verse phonons and m = 3 for longitudinal phonons.
These temperature dependences are in agreement
with the findings of Herring.® At high temperatures,

Klemens took m =1 for both polarization branches.
Except Joshi and Verma, ® who have taken different
values of m in the different temperature ranges

(m =1-4 for transverse phonons and m =1-3 for
longitudinal phonons), other workers have used

the expressions given by Herring and Klemens.
Since m, according to Guthrie, is a continuous
function of temperature, m=m(T), the use of dif-
ferent values of m in the different temperature
regions is only a partial solution of the problem.
In view of this inadequacy, we prefer to incor-
porate Guthrie’s idea of the temperature dependence
of m by writing the three-phonon scattering re-
laxation rate as

- (T) ,-o/aT
Taph locg(w)T"' )e (]

___Bg(w)Tm(T)e- e/aT . (3)



